1. The closed-loop characteristic equation is 1+G(s) G(s) is the open-loop transfer function, Φ(s) is the closed-loop transfer function, so that the denominator = 0 is the closed-loop characteristic equation.
2. The closed-loop characteristic equation is 1+G(s) G(s) is the open-loop transfer function, Φ(s) is the closed-loop transfer function, so that the denominator = 0 is the closed-loop characteristic equation, and when the unit is fed back, h(s)=1. There are two types of open-loop transfer functions: the first one describes the dynamic characteristics of an open-loop system (a system without feedback).
3. The closed-loop characteristic equation is a polynomial equation whose root determines the stability and dynamic performance of the system. Specifically, the form of the closed-loop characteristic equation is 1+G(s) H(s)=0, where G(s) is the transfer function of the system and H(s) is the transfer function of the controller.
1. The closed-loop characteristic equation is: if the point on the s plane is a closed-loop pole, then the phase composed of zj and pi must satisfy the above two equations, and the modulus equation is related to Kg, while the phase angle equation is not related to Kg.
2. The closed-loop characteristic equation is 1+G(s). G(s) is an open-loop transfer function, Φ(s) is a closed-loop transfer function, and the denominator = 0 is a closed-loop characteristic equation.
3. The closed-loop characteristic equation is 1+G(s) G(s) is an open-loop transfer function, Φ(s) is a closed-loop transfer function, so that the denominator = 0 is a closed-loop characteristic equation. When the unit is fed back, h(s)=1. There are two types of open-loop transfer functions: the first one describes the dynamic characteristics of an open-loop system (a system without feedback).
4. If the open-loop transfer function GH=A/B, then fai=G/(1+GH), and the characteristic equation is 1+GH=0, that is, 1+A/B=0, that is, (A+B)/B=0, that is, A+B=0, that is, the intuitive numerator plus denominator.
Automatic control principle exercise (20 points) Try the structure diagram equivalently simplified to find the transfer function of the system shown in the figure below. Solution: So: II. ( 10 points) The characteristic equation of the known system is to judge the stability of the system. If the closed-loop system is unstable, point out the number of poles in the right half of the s plane.
According to the meaning of the question, the input signal is r(t)=4+6t+3t^2, the open-loop transfer function of the unit feedback system is G(s)=frac{ 8(0.5s+1)}{ s^2(0.1s+1)}. First of all, we need to convert the input signal r(t) into the Laplace transformation form.
The first question should be clear first. Since there is the same root trajectory, the open-loop functions of A and B must be the same, because the root trajectory is completely drawn according to the open-loop function. GHA=GHB=K(s+2)/s^2(s+4), I use GH to express the open loop, so as not to be confused with the latter.
This question involves the time domain method in modern control theory. 1 First, find the state transfer matrix. There are many methods. The following is solved by the Lasian inverse transformation method, which is more convenient: SI-A=[S-1 0;—1 S-1] Annotation: The matrix is represented by Matlab here, and the semicomon is used as a sign of two lines.
a, using the current relationship, the following relational formula can be obtained, ui/R1 =-uo/R2 -C duo/dt, and the Lashi transformation on both sides can obtain the relational formula in the question. B. You can use the superposition principle of the linear circuit to make u1 and u2 zero respectively, find the corresponding uo1 and uo2, and then add them to uo, and then do the Lashi transform.
Binance market-APP, download it now, new users will receive a novice gift pack.
1. The closed-loop characteristic equation is 1+G(s) G(s) is the open-loop transfer function, Φ(s) is the closed-loop transfer function, so that the denominator = 0 is the closed-loop characteristic equation.
2. The closed-loop characteristic equation is 1+G(s) G(s) is the open-loop transfer function, Φ(s) is the closed-loop transfer function, so that the denominator = 0 is the closed-loop characteristic equation, and when the unit is fed back, h(s)=1. There are two types of open-loop transfer functions: the first one describes the dynamic characteristics of an open-loop system (a system without feedback).
3. The closed-loop characteristic equation is a polynomial equation whose root determines the stability and dynamic performance of the system. Specifically, the form of the closed-loop characteristic equation is 1+G(s) H(s)=0, where G(s) is the transfer function of the system and H(s) is the transfer function of the controller.
1. The closed-loop characteristic equation is: if the point on the s plane is a closed-loop pole, then the phase composed of zj and pi must satisfy the above two equations, and the modulus equation is related to Kg, while the phase angle equation is not related to Kg.
2. The closed-loop characteristic equation is 1+G(s). G(s) is an open-loop transfer function, Φ(s) is a closed-loop transfer function, and the denominator = 0 is a closed-loop characteristic equation.
3. The closed-loop characteristic equation is 1+G(s) G(s) is an open-loop transfer function, Φ(s) is a closed-loop transfer function, so that the denominator = 0 is a closed-loop characteristic equation. When the unit is fed back, h(s)=1. There are two types of open-loop transfer functions: the first one describes the dynamic characteristics of an open-loop system (a system without feedback).
4. If the open-loop transfer function GH=A/B, then fai=G/(1+GH), and the characteristic equation is 1+GH=0, that is, 1+A/B=0, that is, (A+B)/B=0, that is, A+B=0, that is, the intuitive numerator plus denominator.
Automatic control principle exercise (20 points) Try the structure diagram equivalently simplified to find the transfer function of the system shown in the figure below. Solution: So: II. ( 10 points) The characteristic equation of the known system is to judge the stability of the system. If the closed-loop system is unstable, point out the number of poles in the right half of the s plane.
According to the meaning of the question, the input signal is r(t)=4+6t+3t^2, the open-loop transfer function of the unit feedback system is G(s)=frac{ 8(0.5s+1)}{ s^2(0.1s+1)}. First of all, we need to convert the input signal r(t) into the Laplace transformation form.
The first question should be clear first. Since there is the same root trajectory, the open-loop functions of A and B must be the same, because the root trajectory is completely drawn according to the open-loop function. GHA=GHB=K(s+2)/s^2(s+4), I use GH to express the open loop, so as not to be confused with the latter.
This question involves the time domain method in modern control theory. 1 First, find the state transfer matrix. There are many methods. The following is solved by the Lasian inverse transformation method, which is more convenient: SI-A=[S-1 0;—1 S-1] Annotation: The matrix is represented by Matlab here, and the semicomon is used as a sign of two lines.
a, using the current relationship, the following relational formula can be obtained, ui/R1 =-uo/R2 -C duo/dt, and the Lashi transformation on both sides can obtain the relational formula in the question. B. You can use the superposition principle of the linear circuit to make u1 and u2 zero respectively, find the corresponding uo1 and uo2, and then add them to uo, and then do the Lashi transform.
OKX Wallet app download for Android
author: 2025-02-02 20:37OKX Wallet app download for Android
author: 2025-02-02 20:27728.22MB
Check245.64MB
Check398.85MB
Check555.35MB
Check382.69MB
Check597.12MB
Check437.68MB
Check532.77MB
Check773.66MB
Check558.83MB
Check722.71MB
Check463.78MB
Check175.98MB
Check444.47MB
Check148.85MB
Check218.51MB
Check784.43MB
Check741.86MB
Check879.56MB
Check632.36MB
Check533.84MB
Check678.16MB
Check995.39MB
Check521.85MB
Check829.19MB
Check635.17MB
Check223.29MB
Check816.38MB
Check212.32MB
Check216.23MB
Check732.19MB
Check784.52MB
Check889.32MB
Check478.16MB
Check844.87MB
Check839.18MB
CheckScan to install
Binance market to discover more
Netizen comments More
1031 拜赐之师网
2025-02-02 20:57 recommend
702 一片丹心网
2025-02-02 20:52 recommend
2857 绝世佳人网
2025-02-02 20:21 recommend
1527 以利累形网
2025-02-02 20:06 recommend
1035 翩若惊鸿网
2025-02-02 19:55 recommend